现有技术只能解决TiO2存在的一个或两个问题,如混晶材料如德国Degussa公司生产的P25纳米TiO2含有约80%的锐钛矿和20%的金红石,由于两种TiO2晶型的费米能级不同,两相界面间产生肖特基势垒,可促进电子和空穴的分离及迁移到晶体表面而与有机物发生反应,从而提高活性(Hurum et al. J. Phys. Chem. B, 2003, 107,24545-4549),但其可见光催化活性仍然较低,50m/g左右的比表面积仍有较大的提升空间;利用具有窄禁带宽度的如CdS等半导体进行复合可能会提高可见光催化活性及电子-空穴分离效率,但是比表面积会减小;高比表面积载体负载虽然会提高对目标物的吸附,提高光催化效率,但是可见光活性没有得到提高。而且这些制备方法存在过程复杂、稳定性不好或需要较复杂的设备等问题。